Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Applied Economics Letters ; : 1-7, 2022.
Article in English | Web of Science | ID: covidwho-2070005

ABSTRACT

This paper investigates the price and risk dynamics of Bitcoin. Applying SVAR to study Bitcoin, gold and U.S. dollar in one system, we find that neither the gold nor U.S. dollar can explain Bitcoin pricing dynamics in the short-run. We further apply the DCC-MGARCH model to study the risk correlations. The results show that there exists volatility spillover effect and dynamic correlation between three markets, which is magnified with the advent of COVID-19. We can thus draw a conclusion that the boom of Bitcoin is just a hype and speculative bubble.

2.
Sci Data ; 9(1): 294, 2022 06 13.
Article in English | MEDLINE | ID: covidwho-1890207

ABSTRACT

Since 2019, the novel coronavirus (SARS-COV-2) disease (COVID-19) has caused a worldwide epidemic. Anti-coronavirus peptides (ACovPs), a type of antimicrobial peptides (AMPs), have demonstrated excellent inhibitory effects on coronaviruses. However, state-of-the-art AMP databases contain only a small number of ACovPs. Additionally, the fields of these databases are not uniform, and the units or evaluation standards of the same field are inconsistent. Most of these databases have not included the target domains of ACovPs and description of in vitro and in vivo assays to measure the inhibitory effects of ACovPs. Here, we present a database focused on ACovPs (ACovPepDB), which contains comprehensive and precise ACovPs information of 518 entries with 214 unique ACovPs manually collected from public databases and published peer-reviewed articles. We believe that ACovPepDB is of great significance for facilitating the development of new peptides and improving treatment for coronavirus infection. The database will become a portal for ACovPs and guide and help researchers perform further studies. The ACovPepDB is available at http://i.uestc.edu.cn/ACovPepDB/ .


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Databases, Chemical , Humans , Peptides/chemistry , Peptides/pharmacology , Peptides/therapeutic use , SARS-CoV-2/drug effects
3.
Tourism Tribune ; 36(2):8-10, 2021.
Article in Chinese | CAB Abstracts | ID: covidwho-1727108

ABSTRACT

The global outbreak of the new crown epidemic, because the RO value of the virus is as high as 1.4 to 2.5, its spread rate is increasing exponentially, and its impact on human society is unprecedented. This means that the new coronavirus will have a high probability of long-term existence and coexist with humans in the future. Some experts predict two long-term forms of the new coronavirus: First, the new coronavirus has the potential to transform into a seasonal plague, just like the flu.

4.
Clin Lab ; 67(11)2021 Nov 01.
Article in English | MEDLINE | ID: covidwho-1513105

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that brings a significant public health challenge. A rapid and simple method is necessary for testing suspected samples and screening the population. METHODS: To better monitor sample effectiveness, this study described a method to detect nucleocapsid protein gene (N gene) of SARS-CoV-2 and human ACTB gene employing real-time duplex reverse transcription multienzyme isothermal rapid amplification (RT-MIRA) assays. RESULTS: The established real-time duplex RT-MIRA assays showed that no cross-reactions were observed to other pathogens and the detection limit was 100 copies/reaction. Using simulated clinical samples to test established assays further and the amplification process took no more than 20 minutes at 42°C. CONCLUSIONS: RT-MIRA assays are faster and easier than reverse transcription real-time polymerase chain reaction (RT-PCR). It is expected to be further optimized and evaluated in the detection of SARS-CoV-2 confirmed cases.


Subject(s)
COVID-19 , Reverse Transcription , Humans , Nucleic Acid Amplification Techniques , SARS-CoV-2 , Sensitivity and Specificity
5.
Nat Metab ; 3(7): 909-922, 2021 07.
Article in English | MEDLINE | ID: covidwho-1279905

ABSTRACT

Exosomes represent a subtype of extracellular vesicle that is released through retrograde transport and fusion of multivesicular bodies with the plasma membrane1. Although no perfect methodologies currently exist for the high-throughput, unbiased isolation of pure plasma exosomes2,3, investigation of exosome-enriched plasma fractions of extracellular vesicles can confer a glimpse into the endocytic pathway on a systems level. Here we conduct high-coverage lipidomics with an emphasis on sterols and oxysterols, and proteomic analyses of exosome-enriched extracellular vesicles (EVs hereafter) from patients at different temporal stages of COVID-19, including the presymptomatic, hyperinflammatory, resolution and convalescent phases. Our study highlights dysregulated raft lipid metabolism that underlies changes in EV lipid membrane anisotropy that alter the exosomal localization of presenilin-1 (PS-1) in the hyperinflammatory phase. We also show in vitro that EVs from different temporal phases trigger distinct metabolic and transcriptional responses in recipient cells, including in alveolar epithelial cells, which denote the primary site of infection, and liver hepatocytes, which represent a distal secondary site. In comparison to the hyperinflammatory phase, EVs from the resolution phase induce opposing effects on eukaryotic translation and Notch signalling. Our results provide insights into cellular lipid metabolism and inter-tissue crosstalk at different stages of COVID-19 and are a resource to increase our understanding of metabolic dysregulation in COVID-19.


Subject(s)
COVID-19/metabolism , COVID-19/virology , Extracellular Vesicles/metabolism , Lipidomics , Metabolomics , SARS-CoV-2 , Biological Transport , COVID-19/epidemiology , Cell Fractionation , Cell Membrane/metabolism , Chemical Fractionation , Cluster Analysis , Computational Biology/methods , Exosomes/metabolism , Host-Pathogen Interactions , Humans , Lipidomics/methods , Metabolome , Metabolomics/methods , Retrospective Studies , SARS-CoV-2/genetics , SARS-CoV-2/immunology
6.
Cell Metab ; 32(2): 188-202.e5, 2020 08 04.
Article in English | MEDLINE | ID: covidwho-612608

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic presents an unprecedented threat to global public health. Herein, we utilized a combination of targeted and untargeted tandem mass spectrometry to analyze the plasma lipidome and metabolome in mild, moderate, and severe COVID-19 patients and healthy controls. A panel of 10 plasma metabolites effectively distinguished COVID-19 patients from healthy controls (AUC = 0.975). Plasma lipidome of COVID-19 resembled that of monosialodihexosyl ganglioside (GM3)-enriched exosomes, with enhanced levels of sphingomyelins (SMs) and GM3s, and reduced diacylglycerols (DAGs). Systems evaluation of metabolic dysregulation in COVID-19 was performed using multiscale embedded differential correlation network analyses. Using exosomes isolated from the same cohort, we demonstrated that exosomes of COVID-19 patients with elevating disease severity were increasingly enriched in GM3s. Our work suggests that GM3-enriched exosomes may partake in pathological processes related to COVID-19 pathogenesis and presents the largest repository on the plasma lipidome and metabolome distinct to COVID-19.


Subject(s)
Coronavirus Infections/blood , Coronavirus Infections/pathology , Exosomes/metabolism , G(M3) Ganglioside/blood , Gangliosides/blood , Pneumonia, Viral/blood , Pneumonia, Viral/pathology , Adult , Aged , Betacoronavirus , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , COVID-19 , Diglycerides/blood , Female , Humans , Male , Metabolome/physiology , Metabolomics/methods , Middle Aged , Pandemics , SARS-CoV-2 , Sphingomyelins/blood , Tandem Mass Spectrometry , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL